

Curriculum Framework PLTW Launch - 4th Grade - Input/Output: Human Brain

that ...

Standards

Next Generation Science Standards

- ETS1-1 Define a simple problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 4-LS1-2 Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
- 4-LS1-2 Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
- LS1.A Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
- LS1.D Information Processing -

Desired Results (stage 1)

Students will be able to independently use their learning to ...

- T1 Identify how damage to any part of the nervous system might impact function.
- T2 Apply a step by step process to design and perform investigations to find answers to questions.
- T3 Utilize critical thinking skills to solve a problem.

• U1 – Scientists ask and identify questions

to gain knowledge or solve problems.

U2 – Scientists develop and use models to

represent amounts, relationships, relative

scales, and/or patterns in the natural and

investigations collaboratively to produce

U4 – Scientists make predictions based on

U5 – Scientists make observations and/or

collect data to construct evidence-based

conclusions for natural phenomena.

data that serves as evidence used to

U3 – Scientists plan and conduct

designed world(s).

answer questions.

prior experiences.

Meaning

Transfer

UNDERSTANDINGS: Students will understand ESSENTIAL QUESTIONS: Students will keep considering ...

- Q1 How does your body sense input from the outside world and make an appropriate response?
- Q2 How can medical professionals use patient symptoms to diagnose brain injuries?
- Q3 How does information we see in the media influence our decisions about healthy behavior?

© 2015 Project Lead The Way, Inc.

- Different sense receptors are specialized for particular kinds of information, which may then be processed by an animal's brain.

 Animals are able to use their perceptions and memories to guide their actions.
- ETS1.A Defining and Delimiting
 Engineering Problems Possible
 solutions to a problem are limited by
 available materials and resources
 (constraints). The success of a
 designed solution is determined by
 considering the desired features of a
 solution (criteria). Different proposals for
 solutions can be compared on the basis
 of how well each one meets the
 specified criteria for success or how well
 each takes the constraints into
 accounts.
- ETS1.B Developing Possible Solutions

 Research on a problem should be carried out before beginning to design a solution. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.
- Science and Engineering Practices –
 Asking Questions and Defining

 Problems Asking questions and Builds
 on K-2 experiences and progresses to
 specifying qualitative relationships.
- Science and Engineering Practices –
 Developing and Using Models Builds on K-2 experiences and progresses to

- U6 Scientists keep and organize all of their work in a scientific notebook.
- U7 Scientists work collaboratively and communicate their findings with others.
- U8 The design process is a step by step method used to guide people in developing solutions to problems.
- U9 The nervous system is composed of many unique structures, each with a specific function.
- U10 The nervous system receives stimuli from the outside world, interprets this information, and generates an appropriate response.
- U11 Brain processing determines how we store memories and how quickly and appropriately the body responds to internal and external stimuli.
- U12 Damage to the nervous system can lead to disease or dysfunction.

Acquisition

SKILLS: Students will...

- S1 Identify major regions of the human brain.U9, U10, U12
- S2 Outline what happens in the human body from an initial stimulus to a response. U2, U9, U10, U12
- S3 Perform an investigation in order to draw conclusions. U1, U2, U3, U4, U5, U6, U7
- S4 Maintain a notebook to document work. U1, U3, U4, U5, U6, U7, U8
- S5 Share findings and conclusions with others. U6, U7

KNOWLEDGE: Students will...

- K1 Describe how each region within the brain helps control and regulate specific functions in the body. U9, U10, U11, U12
- K2 Describe how different sense receptors are specialized for particular kinds of information. U9, U10
- K3 Describe how the organs responsible for each sense communicate with the brain.

© 2015 Project Lead The Way, Inc.

- building and revising simple models and using models to represent events and design solutions.
- Science and Engineering Practices –
 Planning and Carrying Out
 Investigations Builds on K-2
 experiences and progresses to include
 investigations that control variables and
 provide evidence to support
 explanations or design solutions.
- Science and Engineering Practices –
 Analyzing and Interpreting Data Builds on K-2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
- Science and Engineering Practices –
 Using Mathematics and Computational
 Thinking Builds on K-2 experiences
 and progresses to extending
 quantitative measurements to a variety
 of physical properties and using
 computation and mathematics to
 analyze data and compare alternative
 design solutions.
- Science and Engineering Practices –
 Constructing Explanations and
 Designing Solutions Builds on K-2
 experiences and progresses to the use
 of evidence in constructing explanations
 that specify variables that describe and
 predict phenomena and in designing
 multiple solutions to design problems.
- Science and Engineering Practices -

U9. U10

- K4 Recognize that the nervous system relies on specialized cells called neurons to pass signals to and from the brain and spinal cord. U9, U10
- K5 Recognize that many brain injuries can be prevented. U12

• S6 – Follow a step by step method to solve a problem. U1, U2, U3, U6, U7, U8, U12

Obtaining Francisco and	
Obtaining, Evaluating, and	
Communicating Information – Builds on	
K-2 experiences and progresses to	
evaluating the merit and accuracy of	
ideas and methods.	
Crosscutting Concept – Cause and	
Effect – Case and effect relationships	
are routinely identified, tested, and used	
to explain change.	
Crosscutting Concept – Scale,	
Proportion, and Quantity – Natural	
objects and/or observable phenomena	
exist from the very small to the	
immensely large or from very short to	
very long periods of time. Standards	
units are used to measure and describe	
physical quantities such as weight, time,	
temperature, and volume.	
Crosscutting Concept – Systems and	
System Models – A system is a group of	
related parts that make up a whole and	
can carry out functions its individual	
parts cannot.	
Crosscutting Concept – Systems and	
System Models – A system can be	
described in terms of its components	
and their interactions.	
Crosscutting Concept – Energy and	
Matter – Energy can be transferred in	
various ways and between objects.	
Crosscutting Concept – Structure and	
Function – Different materials have	
substructures, which can sometimes be	
observed.	
Crosscutting Concept – Structure and	
Function – Substructures have shapes	
	 © 2015 Project Lead The Way, Inc.

and parts that serve functions.	
Common Core ELA	
 RL.4.1 Refer to details and examples in 	
a text when explaining what the text	
says explicitly and when drawing	
inferences from the text.	
RI.4.2 Determine the main idea of a text	
and explain how it is supported by key	
details; summarize the text.	
RI.4.4 Determine the meaning of	
general academic and domain-specific	
words or phrases in a text relevant to	
a grade 4 topic or subject area.	
RI.4.7 Interpret information presented	
visually, orally, or quantitatively (e.g., in	
charts, graphs, diagrams, time lines,	
animations, or interactive elements on	
Web pages) and explain how the	
information contributes to an	
understanding of the text in which it	
appears.	
 W.4.2 Write informative/explanatory 	
texts to examine a topic and convey	
ideas and information clearly.	
 W.4.3 Write narratives to develop real 	
or imagined experiences or events	
using effective technique, descriptive	
details, and clear event sequences.	
 W.4.2.D Use precise language and 	
domain-specific vocabulary to inform	
about or explain the topic.	
 W.4.2.E Provide a concluding statement 	
or section related to the information or	
explanation presented.	
 W.4.4 Produce clear and coherent 	

writing in which the development and	
organization are appropriate to task,	
purpose, and audience.	
W.4.7 Conduct short research projects	
that build knowledge through	
investigation of different aspects of a	
topic.	
W.4.8 Recall relevant information from	
experiences or gather relevant	
information from print and digital	
sources; take notes and categorize	
information, and provide a list of	
sources.	
SL.4.1 Engage effectively in a range of	
collaborative discussions (one-on-one,	
in groups, and teacher-led) with diverse	
partners on grade 4 topics and texts,	
building on others' ideas and expressing	
their own clearly.	
SL.4.4 Report on a topic or text, tell a	
story, or recount an experience in an	
organized manner, using appropriate	
facts and relevant, descriptive details to	
support main ideas or themes; speak	
clearly at an understandable pace.	
Common Core Math	
CCSS.MATH.CONTENT.4.MD.A.2	
Use the four operations to solve word	
problems involving distances, intervals	
of time, liquid volumes, masses of	
objects, and money, including problems	
involving simple fractions or decimals,	
and problems that require expressing	
measurements given in a larger unit in	
terms of a smaller unit.	

•	4.MD.A.1 Know relative sizes of	
	measurement units within one system of	
	units including km, m, cm; kg, g; lb, oz.;	
	I, ml; hr, min, sec. Within a single	
	system of measurement, express	
	measurements in a larger unit in terms	
	of a smaller unit.	
•	MP.2 Reason abstractly and	
	quantitatively.	
•	MP.4 Model with mathematics.	
•	MP.5 Use appropriate tools	
	strategically.	
•	3-5.OA Operations and Algebraic	
	Thinking	
	-	

Evidence (stage 2)			
Activities (A)	Assessments FOR	Assessments OF	
Projects (P)	Learning	Learning	
Problems (B) (Module level)			
Activity 1: The Body's Computer	 Essential questions Documentation of key ideas on Nervous System Resource Sheet Building of central nervous system on body outlines 	Completed questions on Nervous System Resource Sheet Final model of central nervous system with tape flags identifying key functions of each area	
		Conclusion questions	
Activity 2: Senses Exploration	 Essential questions Completion of senses station explorations with documentation of observations Discussion of observations for each sense station 	 Completed labeling of sense structures diagrams Identification of structure that helps send signals about each sense to the brain Identification of area of the brain associated with each sense Conclusion questions 	
Activity 3: The Brain in Action	 Essential questions Completion of memory stations and reaction time tests Discussion and completion of each step of the scientific 	 Completion and explanation of inquiry experiment Documentation of each step of the scientific inquiry process in the Launch Log 	

Learning Plan (stage 3)			
Activities (A), Projects (P), and Problems (B)	Knowledge and Skills		
Activity 1: The Body's Computer In this activity students will be introduced to the structure and function of the nervous system and learn about the brain and spinal cord, which together make up the central nervous system. Students will build a model brain out of clay and identify what each region of the brain does.	K1, K4, S1		
Activity 2: Senses Exploration In this activity students will explore how the brain takes in information from the outside world. They will investigate each of the five senses and complete an activity to test each sense and learn how the organs responsible for each sense communicate with the brain.	K1, K2, K3		
Activity 3: The Brain in Action In this activity the teacher will investigate how the brain processes the information it takes in through the senses and how it stores the information as memories. Students will complete a scientific inquiry investigation to explore reaction time.	S3, S4, S5		

	inquiry process	Conclusion questions		
Project: Information Processing	Essential questions Completion of the Input and Output in the Human Body Presentation Documentation of key ideas on the Peripheral Nervous System Resource Sheet Completion of kinesthetic activity to model signal transmission through neurons	Identification of input and output in three scenarios Completed questions on Peripheral Nervous System Resource Sheet Illustration of the path of information to and from the central nervous system on the body outline for three scenarios, using one color to represent input and another color to represent output (and appropriate text boxes) Conclusion questions	Project: Information Processing In this project students will use everything they have learned thus far in the module and put it all together to explore how our bodies sense information from the outside world, process this information, and cause an appropriate response or reaction in the body. Students will outline what happens in the body when they take in information from the world around them and showcase this flow of information on their Body Outline models.	K1, K2, K3, K4, S2
Problem: Brain Injury Prevention	 Essential questions Creation of script or storyboard for podcast or video 	 Documentation in the Launch Log of each of the design process steps Discussion of each of the design process steps Creation of podcast or video Creation of peer evaluation test 	 Problem: Brain Injury Prevention In this design challenge, students will work as part of a team to design, plan, and create a video or podcast to raise awareness about concussions and educate their peers as to how concussions can either be identified early or prevented completely. Students will follow a design process, a step by step way to solve problems, to help them develop their video or podcast. 	K1, K5, S4, S5, S6

	Description of peer evaluation test and reflection on results Conclusion questions		
Input/Output: Human Brain Check for Understanding	Check for Understanding Summative Assessment	Input/Output: Human Brain Check for Understanding	K1, K4, S1, S2